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1. I~~ roduction

In this paper we consider , the numerical solution of elliptic par-
t ia l  d i f f e r e n t i a l  equations in spherical domains. There are numerous
app l ications in engineering and the physical sciences in which the sol-
ution of a spherical elliptic equation is desired ; see the refe rences
in [12]. ~When all the functions involved are spher ically syn.tric
(that is, they depend only on distance from the center of the domain),
the problem can be replaced by an equivalent t~~—point boundary value
problem. The resulting problem is singular , but nevertheless has a
smooth solution. It should therefore be possible to approx imate the
solution accurately usidg the Rayleigh—Ritz Galerkin method wi th a
piecewise polynomial subspace on a quasiun iform mesh. We will obtstn
optimal—order error bounds, showing that this procedure is theoretical ly
well—founded. Instead of the usual Sobolev norms, we ese norms which
are appropriate to the original n—dimensional setting of the problem.

The problem has been considered , in 2 and 3 dimensions , by Russell
and Sham~,ine [ 12). They obtain error bound s for approx imation proce-
dures specially designed to deal with the apparen t singularity at the
origin. In particular , they treat collocation in which the basis ii
augmented by singular basis functions , singul ar patch bases (L—spl ines),
and a finite difference scheme of Jamet [83 designed to hand le the sin-
gularity. Crouzeix and Thomas (11 and Reddien (11) consider this prob-
lem as part of a wider class and obtain cinilar results.

Dupont and Wahlbin (4] and Jesperson (9) have analyzed an approxi-
mation procedure similar to ours, and have obtained t~rror bound s of op-
timal order in the usual Sobolev norms. The import of their results,
together with those of this paper , is that no special measures are re-
quired for this problem : the Rayleigh—Ritz Galerkin method using
high—order piecewise polynomial spaces on a uniform mesh is a highly
effective numerical method .

2. $p~herically Symmetric Elliptic Problems

Let B(a) be the open sphere of rad ius a in R”, i.e.,

n
8(a) {x c R I r(x ) < a),

where r(x) + x~ + ... + x
2
, and B E 8(1) be the open unit

sphere.

Consider the partial differential equation

— A U+ QU — F m B , (1)

U 0  on~~B, (2)

where F and Q are given functions defined on B. We say that a function
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defined on B is spherically symmetr ic if i t  depends onl y on distance r
from the origin. If F and Q are spherically symmetric then an obvioua
symmetry argument shows that U is, too (a change in coord inate systems
by rotation around any axis passing through the origin leaves the prob—
1cm , and hence its solution, unchanged).

Let u(r), f(r), and q(r) be functions such that

F(x) —

Q(x ) S q ( r (x )),

U(x ) u( r (x )) .

Then u(r) can be obtained as the solution of the singular two—point
boundary value problem

— D(r~~
’Du) + r’~~

’q(r)u — r~~
’f ( r ), 0 < r C 1, (3)

Du(0) — u(l) — 0, (4)
dwhere D dr

We note that in case a — 3, the well—known change of variables
v — ru results in the nonsingular problem

2
— D v + qv rf , 0 < r < l ,

v(0 ) — v ( l )  — 0.

However, we know of no such trick in two dimensions!

For real—valued functions f,g defined on (0,a) we let

(f ) I r~~~f ()() dr,

and

8(a) ‘ 8(a)’

Furthermore, we define J
m
(a) (respectively J~(a)) to be the closure of

the C functions ( respectively the C functions which vanish in a
neighborhood of a) with respect to the norm

~~ U m ,B( a) ( 
~~ 

U D i  II~~~ )

1/2
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Ue ass ume that the coefficien t q C CCI) is such that there exist
positive constants A and A such that

A 2 flDu 
~B(a) < (u~uJ 3 ( )  ~ A

2 Il Du hI B(a)

f or all u € J 1 (a) , where 
a 

n—i
= I r [DuDv + quv) dr.o~a,

Our approximation—theoretic results in the spaces ~m will rely on
the following basic fact, proved in Courant and Hilbert (2].

Lemma~ 1: If f c J~ (a) , then

,~ ~ B(a) < a II Df II 8(a)’ (6)

Inequalities (5) and (6) show that the bilinear form [ , 3 is
positive definite over the space J0

. Thus, for each f £ J there exists

a unique u c J~, called the generalized solution of (3) — (4), such that

(U
~~

V)
B 

(f,v)B
, f or all V £ J~.

This differential equation is exceeding ly well—behaved . In fact,
we know that the size of the solution is bounded in terms of the size of
the data.

Lemma 2: There exists a constant r such that, for all f £ J0, the gen-
eralized solution u of (3) — (4) satisfies

IID
2u “ B 

< r h f

Proof: See (13J.

We now state a variant of the Sobolev lemma. Let xJ denote the
greatest integer not exceeding x, —

Lemma 3: Let u e Jm(a). There exists a positive conbtant C~ such that,
for all r c [O ,aJ

(u ( r) ) 2 < C~ £ a21” hI D1u h I
2 

‘ (7)
a\ 

_ _ _ _ _ _ _ _ _ _ _ _

r i—  - -

w h e r em _ [~~]+1 I
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Proof: See Friedman (7].

In the cases n — 2 or 3, (7) applies with . — 2.

Let Sn 
be a finite— dimensional subspace of J~1. The function ~ C

is the Rayleigh—Ritz Calerkin (RRG) approximation to u if

(~i,v I — (f.v ) , for all v c Sn B  n B  a n

Since the RRG approx imation is the projection of u on S~ with respect to

the inn”r product 
~
‘‘‘

~B’ 
we have the error bounds

Eu — D,u — u38 
— m t  Eu — v ,u —

v tSn n

and by (5),

II D(u — D) ~ B < A ’A inf II D(u — 
~‘~~> ~ B’ (8)

V £S
n f l

Let A be a partition of (0,13:

A : 0 — x0 C x~ C x
2 < ... < x~4 — 1,

and Ii max (x~ — x~~1
). We assume that the partition is quasiuni—

1 <i<N

form, meaning that the global mesh ratio,

x~ — x
1 1M max

l(i,j<N X
1 

—

is bounded independent of N.

As approximating subspaces we will use spaces of piecewise poly—
nomials with respect to the partition A:

S
1
~(A ,v) (S C C”(O ,lJ ) I s(1) — 0, and

s is a polynomial of degree C k on each of
the intervals (x1_1, x1

), 1 < i < N ).

- -- - —- ~~~~--,  — -----—— - ~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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3. Spherical Spline Approx imation

We first consider approximation by polynomials in a neighborhood of
the origin.

Lemma 4: Let v £ Jm(5), m >~ 1. There exists a polynomial Ta
V of order

m satisfying

11D1 (v — Tv) 0 B(a) .
~~
, ~~~ lID V II 8( a)

for all 0 < j < m.

Proof: Let TV  be the first in terms of the Taylor series for v at a,

i.e.,

T V(x) — v(a) + Dv(a)(x—a) + . • , + Cx —

Since D’~~
1(v — T v )  £ J~ (a) , we may apply inequality (6), obtaining

ltD~~~(v — TV ) u1 s(s) < a IID
m
(v — Ta

V) hI~()
— a hI D

m
V hl B(a) .

To prove (9), we note that D1 (v — Tv)(a) — 0 for all 0 < j C rn-i. We

may therefore apply (6) to each of the remaining derivatives, and use
the result for D1~~ to obtain the result for D

1.

Q.E.D.

Theorem 1: For each integer 2 < m < k, there exists a positive constant
K — K(k ,m,n ) ,  depending on the global mesh ratio, such that for each

f £ J~ ~ J~ there exists an approximation £ e S~ (A ,v) to f satisfying

11D1(f — 
~~ “ B 

< K hm j  
IID

m
f ‘ B 

(10)

Proof: The details of the proof may be found in (13). We will sketch
the main ideas here.

The approximation whose existence is asserted can be explicitly

constructed . Let (B1
)~,,1 be the 8—sp line basis functions for the space

S~ (A, v). In [3), de Boor and Fix construct a set of linear functionals

(X
i) dual to the B—spline basis, i.e.,

A
i
(B
j
) — 6

ij 
— 

~ : ; ~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~ --- ~~~- - -~~
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The approximation 
d

F f I A (f)B
A 

~~~~~~ 

i i

is called the quasttnterpolant of f.

The functional A~ is a linear combination of derivatives, eval-

uated at some point r~ C su~~or t(B~). Moreover, difference approx ima-

tions may be used instead of derivatives.

We assume that 
~ 

— x
1 for all i such tha t x

1 
is in the support of

B~. and that the points used in the corresponding difference approxima-

tions are all contained in the interval (0,x1
). It can be shown that

there exists a constant C such that, f or all such I ,

Ix (f)I < C lI f U . (11)
i — 

L ( 0 ,x1
)

To obtain error bounds for the quasiinterpolant in the weighted
norm II hI B~ 

we use the fact that the quasiinterpolant of any polynomial

of degree < k is that polynomial (3). Considering first the interval
(0,

11D1(f — F
A
t) ‘~

F B (x1 ) 
~~~ 1101(f —

+ IID1F ( T  f — f ) hlA x 1 8(x 1
)

Let R s f — T
~~

f. By (11 ),
1

IID1FA
(T
x

f - ~ 1’ B(x1
) ~ 

IX~ (R)I h I D 1 8
~ 

1 B(x
1
)

~~. C IIR IILS(o ,x )  
lID 

~

All but k of the basis functions vanish in (0,x1). For those that

don’t, I t  is readily shown that
(n/2)—j

i 8(x1) — 
K x 1

Together with the Sobolev lemma and the bounds for R given in Lemma 4,
this yields

____________________ _ _ - .~~~~~~~~~~~~~~~~
_
~~~--~~~~~~~~~~~~~~~~~

~ _
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M
f 11 5(x )• ( 12)

A sindar argument gives the same result for the intervals
(x

1.x1+i
)
~ 

2 < i < k. In the remaining intervals , the support of any

basis function which is nonzero in the interval is bounded away from
zero. Using this fact , an approx imation result analogous to (12) is
easily obtained . Combining these results yields (10).

Q. E.D.

t. F.rror Bounds for the RRG Approximation

We now consider the error in the RRC approx imation to the general—
izeci solution u of (3) — (4), and show that the RRG approx imation

~l c S~ L.,v) approximates u to optimal order.

Theoren 2: Let u be the generalized solution of (3) — (4). Let

c S~~~,v) be the RRG approximation to u. fl u c a 
~~ 2 < m k,

t hon

IID(u — 
~~ “ B 

< A 1 A K h”~
1 IlD°u Il~ (13)

Ilu — ~iIt 3 ~ 
(AK)

2
r h

tm IIDtmuII B. (14)

Proof: The error bound (13) follows immediately from (8) and the result
of Theorem 1. Inequality (14) also follows, via Nitache’s trick, from
Theorem 1 (10].

5. Computational Aspects of the Method

We have shown that the Rayleigh—Ritz approximation ~i to the solu-
tion u of (3) — (4) is optimally accurate in the natural norms for this
problem . We would like to think of this approximation as inducing a
smooth , accurate approximation of the solution U of the original problem
(I) — (2). For this to happen, the odd derivatives of ~ must vanish at
0. Unless we impose this requirement on the subspace, it will not be
ful rilled .

There are two ways this can be done. We can simp ly force the ele—

r~ent’~ of the space S~ (A ,v) to have odd derivatives which vanish at 0. 

- - — -~~~~~——~~~~~~-
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Alternatively we consider , rather than (3) — ( 4) ,  the two—po int
boundary value problem

n-i n-i n-i
— D(lxI Du) + IxI q(x)u — xl f ( x ) ,

— 1 C x C 1, u(—i ) — u(i) — 0,
also derived from ( 1)  — (2). We then define SS~ (A ,v) to be the space of

C
U 

piecewise polynomials of degree C k (vanishing at —1 and 1) with
respect to a partition which is symmetric about 0:

A : — L S X
_N 
( X~~~~ 1 

< ... < x0 — O C x 1 C ... C 1,

where x~~ — x~ , 1 < i < N.

It can be shown that the results of Theorems 1 and 2 hold for the space

ss~ (A ,v) (13).

The B—spline basis functions then have a symmetry property, derived
from the symmetry of the mesh : if B0, ..., B

d 
are the basis functions

(d+ l — dim(SS~ (A ,v)) numbered in the natural left—to— right order, then

B1
(—x) — B

d j
(x) , —1 C x C 1 , 0 < i < d.

d
Clearly , ~i = t is even if the vector ~ is symmetric about its

1—0
middle:

— 5d—i ’ 0 < i < d. (i5)

The symmetry property (15) will hold for the RRG approximation’s
coefficients, even though we do not impose it. The coefficients are
obtained as the solution of the linear system

— f, (16)

wher e A — (a
11

) ,  £ — (f
t

) ,  and

au ~
1

I x J ’ Q~B1DB
1 

+ qB1B
1

) dx ,

1
- r n-i
= .‘ Jx l f B~ dx,—1

Clearly,  because of the symmetry of the data and the basis functions ,
the matrix A will be symmetr ic about the alternate diagonal and the

— - _- —-- -

- -- ~~~~~~~~ ~:. 
T
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vector I will be symmetric about It s  middle.  This  shows that the coef—
fic ients of ~i will satisfy (15). Thus ~i is even , and all its odd deri-
va tives of order < U vanish at 0.

Tt does not cost any more , in work and storage, to use the (—1 ,1)
pr- -~b1er~ than the (0,1) problem . Because of the symmetries of A , only
1/. of its elements need to be computed . Moreover , using an algorithm
of Evans and Hatzopoulos (53 which takes advantage of symmetry about the
alternate d iagonal , ti.e equations (16) can be solved in half the time
required by the usua l band Cholesky al 4orithm .

The effect of numerical quadrature (used to compute the matrix A
and the right—hand side vector I) on the accurac y of the RIG approx ima-
t ion has been analysed by Fix for nonsingular problems (6). He showed
that if the integrals are computed using composite Gaussian quadrature
wi th k—I points in each intervil , then the error due to the quadrature
is asymptotically as small as the disc retizatton error. We have been
a)’Ie to show that k points is sufficient for this type of singular
problem (13), but conjecture that this result can be improved, and that
k—I po~1ts also suffice here. The numerical results of the next section
strongly support this viewpo int.

~~~. Numerical Results

In this section we present the results of a nurierical experiment ,
which illustrates the utility of the computational procedure analyzed in
the previous sections. Following Russell and Shampine (12), we consider
the problem

2 2 2
—D(x Du) + 4x u — — 20x

Du(O) — u(I) 0,

5 sinh 2xwhich has the so lution u(x )  — — 5.x sinh 2

The RRG approximations to u from several of the S~ (A,y) subspaces

were computed , and the error graphed below. All computations were per-
fo rmed in double precision on a P OP— t O (with 54 binary digits) . The
integ rals requi red were computed using composite Gaussian quadrature
w i t h  k—i nodes in each interval of the mesh . We give the norms l i e  11 8
and Ii De II of the error and its derivative (computed with composite k+l

node Caucsian quadrature rules.)

—

~

—-. 
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Jesperson has solved the quasilinear problem

-D (x Du) -

Du(O) — u(i) — 0,

which has the unique solution u(x) — 2 ln( 2~ 
Our theoretical

results can be made to apply to this problem in a routine manner; cf.
(14]. The RRC approximations to u were computed using Newton’s method
with an initial guess of 0; the resulting sequence of l inear problems
was solved in the manner discussed above. The iteration was stopped

when the residual reached .~l0 ’5. In each case, this required 4 itera—
tions.

As predicted by the theory, the rate of convergence appears to be

(f or the error) and hk i  (for the derivative). Apparently, k—i S

quadrature nodes per interval are sufficient to obtain the predicted
convergence rates.

-~ -~~~~ —--~~~~ - - .  -~~~--
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